A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data
نویسندگان
چکیده
Abstract We propose two robust fuzzy clustering techniques in the context of preference rankings to group judges into homogeneous clusters even case contamination due outliers or, more generally, noisy data. The C-Medoids methods, based on same suitable exponential transformation Kemeny distance, belong different approaches and differ way they introduce fuzziness membership matrix, one “m” exponent other Shannon entropy. As far as distance is concerned, it equivalent Kendall complete but differs from latter handling tied rankings. Simulations prove that our methods are able recover natural structure groups neutralizing effect possible noises outliers. Two applications real datasets also provided.
منابع مشابه
A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملClustering and Prediction of Rankings Within a Kemeny Distance Framework
Rankings and partial rankings are ubiquitous in data analysis, yet there is relatively little work in the classification community that uses the typical properties of rankings. We review the broader literature that we are aware of, and identify a common building block for both prediction of rankings and clustering of rankings, which is also valid for partial rankings. This building block is the...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملGeodesic Distance based Fuzzy Clustering
Clustering is a widely applied tool of data mining to detect the hidden structure of complex multivariate datasets. Hence, clustering solves two kinds of problems simultaneously, it partitions the datasets into cluster of objects that are similar to each other and describes the clusters by cluster prototypes to provide some information about the distribution of the data. In most of the cases th...
متن کاملImage Clustering for a Fuzzy Hamming Distance Based CBIR System
A linear search in a Content-Based Image Retrieval (CBIR) system is time consuming. Like any database system an indexing technique is mandatory for the system to be efficient. This paper studies the application of clustering algorithms to a Fuzzy Hamming Distance based CBIR system for building the image index. The study shows good results using complete linkage agglomerative clustering.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Classification
سال: 2022
ISSN: ['0176-4268', '1432-1343']
DOI: https://doi.org/10.1007/s00357-022-09420-0